Inhibition of BUB1 results in genomic instability and anchorage-independent growth of normal human fibroblasts.

نویسندگان

  • Antonio Musio
  • Cristina Montagna
  • Desirée Zambroni
  • Esterina Indino
  • Ottavia Barbieri
  • Lorenzo Citti
  • Anna Villa
  • Thomas Ried
  • Paolo Vezzoni
چکیده

The relative contribution of aneuploidy and gene mutations to human tumorigenesis is not yet known. Studies in mice have demonstrated that even single point mutations in oncogenes and tumor suppressor genes can dramatically increase tumor frequency. However, models to evaluate the definitive role of aneuploidy and genomic instability are not yet available. Human fibroblast cells have long been used as a tool for investigating proliferation, senescence, immortalization, and tumorigenesis, all processes that are strongly interrelated. We have now used antisense and ribozyme-mediated temporary inhibition of BUB1 to study the consequences of mitotic checkpoint failure on the development of aneuploidy. The analysis of cell colonies selected by soft agar growth showed evidence of chromosome instability and delayed senescence, without being tumorigenic in nude mice. Our data suggest that chromosomal instability and aneuploidy are early changes that precede tumorigenicity in the multistep process leading to neoplastic transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of postreplication repair in transformation of human fibroblasts to anchorage independence.

Cellular capacity for postreplication repair (PRR) and sensitivity to transformation to anchorage independence (AI) were quantified in normal foreskin and xeroderma pigmentosum (XP) variant fibroblasts after treatment with UV or benzo(a)pyrene-diol-epoxide I (BPDE-I). PRR is defined here as a collection of pathways that facilitate the replication of DNA damaged by genotoxic agents. It is recogn...

متن کامل

Hepatitis C Virus Core Protein Transforms Murine Fibroblasts by Promoting Genomic Instability

The oncogenic potential of hepatitis C virus (HCV) core protein has been demonstrated, but the precise mechanism of cell transformation triggered by HCV core is still unclear. This study shows that constitutive expression of HCV core protein (core) in NIH 3T3 murine fibroblasts triggers malignant transformation. At the preneoplastic stage, clones that expressed HCV core constitutively demonstra...

متن کامل

Mitochondrial ribosomal protein S18-2 evokes chromosomal instability and transforms primary rat skin fibroblasts

We have shown earlier that overexpression of the human mitochondrial ribosomal protein MRPS18-2 (S18-2) led to immortalization of primary rat embryonic fibroblasts. The derived cells expressed the embryonic stem cell markers, and cellular pathways that control cell proliferation, oxidative phosphorylation, cellular respiration, and other redox reactions were activated in the immortalized cells....

متن کامل

Anchorage-independent growth of normal human fibroblasts.

Normal human fibroblasts, considered to be entirely anchorage dependent for proliferation, have been grown in methylcellulose medium. The most important factor required for growth in suspension appears to be the use of high levels of serum and hydrocortisone. Newborn foreskin or fetal lung fibroblasts form colonies as large as 0.5 mm in diameter after 3 wk, with a colony-forming efficiency as h...

متن کامل

The requirement of p53 for maintaining chromosomal stability during tetraploidization

Tetraploidization is believed to promote genome instability and tumorigenesis. Whether tetraploids per se are intrinsically unstable and transforming remain incompletely understood. In this report, tetraploidization was induced with cell fusion using mouse fibroblasts. Due to the unequal segregation of chromosomes during multipolar mitosis, the majority of cells were eliminated by p53-dependent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 11  شماره 

صفحات  -

تاریخ انتشار 2003